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Abstract. We study ππ correlations in the exclusive reaction p̄p → 2π+2π−π0 at rest with complete recon-
struction of the kinematics for each event. Inclusive and differential distributions properly normalized show
an enhancement for small invariant masses M++,M−− of like-pion pairs. An even stronger enhancement is
seen for the double differential distributions for low pion-pair masses. The signal is strongest when the π0

energy is large and much weaker when this energy is small. Dynamical models with resonances in the final
state are confronted with the data. For the kinematic situation where the ρ3π channel is important the
simulation predicts a large pion correlation for the double differential density, qualitatively explaining the
observed bahaviour. The stochastic HBT mechanism is not supported by these findings for the exclusive
annihilation reaction studied.

1 Introduction

Nucleon-antinucleon annihilation into multipion states of-
fers the possibility of studying Bose-Einstein (BE) sym-
metrization effects under controlled conditions. In [1] we
have studied the exclusive reaction p̄p → 2π+2π− at rest

on the basis of minimum bias CPLEAR data. The com-
plete kinematical reconstruction of each event has allowed
the direct determination of the square of the reaction am-
plitude. It was found that inclusive densities for equal
charge pairs show very little enhancement at low invariant
pion pair mass M where signals are expected. In contrast
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to this the double-differential distribution in the two equal
charge pairs shows a conspicuous signal at low invariant
masses of the two pairs. This signal is washed out by the
integration leading to the inclusive single pair distribu-
tion. For the quantitative aspects it is important not to
rely on unequal charge pion pairs as reference sample since
π+π− pairs are strongly depleted at low pair masses by
the presence of the ρ meson resonance.

The present paper extends the four pion analysis of
[1] to the annihilation reaction p̄p → 2π+2π−π0 at rest.
This allows us to study the signal as a function of the
total energy in the system of the four charged pions. We
have generalized the formalism of [1] to the five pion case
and studied both the inclusive and the double differential
distributions as a function of the invariant masses of the
pion pairs in different kinematical regions.

The inclusive correlation signal is found to be stronger
in the 5π case than in the 4π channel, but similar other-
wise. In particular inclusive correlations are partly washed
out by the integration over the remaining phase space. The
twofold differential distributions on the other hand, show
a strong enhancement at low invariant mass of like-pion
pairs where signals of pion correlations are expected. The
detailed analysis of the differential distribution shows a
marked dependence of the correlation signal on the invari-
ant mass M++−− of the 2π+2π− system: it is strong at
small values of M++−− (large π0 energies) and decreases
with increasing M++−−. As we shall discuss, this energy
dependence, as well as the strength and the shape of the
signal do not favour an interpretation in terms of the con-
ventional Hanbury–Brown-Twiss (HBT) [2–5] picture of
BE correlations. This conclusion is based on simulations
of resonance production in the final state which qualita-
tively explain a large part of the observed effects.

The plan of the paper is as follows. In Sect. 2 we de-
scribe the analysis of the data and the results for the single
variable distributions. The extension of the formalism of
differential distributions to the five pion channel is given
in Sect. 3 that shows the presence of the correlation signal
in the double-differential distributions. Section 4 discusses
the results comparing with detailed model calculations in-
cluding the dominant resonance mechanisms. Partial pro-
jections similar to the analysis performed earlier in the
2π+2π− case are shown as well and confronted with dy-
namical models. Section 5 gives a summary and conclu-
sions.

2 Analysis of the 2π+2π−π0 data

The reaction p̄p → 2π+2π−π0 at rest in the CPLEAR
experiment proceeds from S- and P -wave atomic states
[6]. The corresponding pion distribution for the final state
configuration {pi}, i = 1, 2, . . . , 5, has the form

dσ({pi}) ∼ |T (k, {pi})|2k→0
dΦ5(p, p1, p2, p3, p4, p5) .(1)

Here T (k, {pi}) is the amplitude of the p̄p annihilation
from the initial p̄p state with relative momentum k, dΦ5(p,
p1, p2, p3, p4, p5) is the 5-body relativistic phase space,

and the limit k → 0 implies the incoherent addition of
the S- and P -wave annihilation occurring in the experi-
ment. The four-vectors of the pions are pi = (Ei,pi), and
p = (2mp, 0) is the total four-momentum for p̄p annihi-
lation at rest, mp being the proton mass. The notation
implies a sum over initial spin states, and all quantum
numbers specifying the initial spin and orbital momentum
are suppressed.

2.1 Event selection

The CPLEAR detector [7] is cylindrically symmetric and
placed inside a solenoidal magnet of 3.6 m length and 2 m
diameter, with a field of 0.44 T. Antiprotons of 0.2 GeV/c
momentum, provided by LEAR, stop and annihilate at
the centre of the detector, in a spherical target of 7 cm
radius filled with gaseous hydrogen at 16 bar. Tracking is
provided by two layers of proportional chambers, six layers
of drift chambers, and two layers of streamer tubes. Out-
side the tracking devices there are 32 sectors of Scintillator
(S1) – Cherenkov (C) – Scintillator (S2) sandwiches pro-
viding particle identification. The outermost detector is an
18-layer lead/gas-sampling electromagnetic calorimeter.

The data analysed here represent a small fraction of
the CPLEAR data and were collected with the so-called
minimum-bias trigger in 1993 and 19941. This trigger re-
quires a hit in the scintillator S1 in coincidence with the
incoming antiproton and accepts events in the entire phase
space, limited only by the energy thresholds and geometri-
cal acceptances. From the total of about 5.5·107 minimum-
bias events, well balanced between opposite magnetic-field
polarity settings, 0.94 ·107 four-prong events were selected
according to the following criteria:

1. four tracks balanced in charge;
2. good quality of track reconstruction (minimal number

of tracking hits, good χ2 for the track fit) and the
vertex coordinates of all track pairs inside the target
sphere.

All tracks were assumed to be pions. The photons from
the π0 → 2γ decay were not considered in the event se-
lection. The π0 kinematics was thus reconstructed from
the charged pions by the missing momentum technique.
To select exclusively the events of the 2π+2π−π0 channel,
kinematical and topological cuts were applied:

1. the 4π invariant mass m4π is required to be m4π <
1.70 GeV to reject events from the 2π+2π− channel;

2. the momentum of each track (pion) must be in the
range 0.06 ≤ pπ ≤ 0.92 GeV/c;

3. the 5π invariant mass

m5π =
4∑

i=1

√
m2

π± + p2
i +

√√√√m2
π0 + (

4∑
i=1

pi)2 (2)

must be within the mass interval 1.87 GeV < m5π <
1.98 GeV.

1 The data published earlier in [8] were collected in 1991 and
1992 with the same trigger
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Fig. 1. The measured single-pion momentum distribution
dNπ/d|pπ| for the 2π+2π−π0 channel. The values are shown
for π+ (•) and π− (◦). The line is the phase-space distribution

4. an opening angle ≥ 60 mrad is required between any
two charged tracks to avoid pion pairs with insufficient
two-track resolution and lepton pairs from γ conver-
sion and π0 Dalitz decays.

Since only charged pions have been analysed, the se-
lection of 2π+2π−π0 events is less well defined than in
the previous search for 2π+2π− events. Thus many anni-
hilation channels were considered and studied as possible
source of background. The process p̄p → 2π+2π−2π0 with
a branching ratio similar to 2π+2π−π0 was found by MC
simulation to be the strongest background channel, i.e. the
tails of m5π(2π+2π−2π0) did extend into the signal region
because of the finite momentum resolution. Monte Carlo
simulations showed that with the above cuts our data
sample contains about 5% background from 2π+2π−2π0,
0.5% from 2π+2π−, and less than 1% from other annihila-
tion channels. Especially the contamination with charged
kaons is found to be small. No evidence for neutral kaons
can be found in the data, where the decays of KS → π+π−
would leave a prominent (narrow) signal. A total of 8.3·105

2π+2π−π0 events remained. The single-track momentum
resolution is about 5%, and a resolution of σ(M2) ≤ 0.005
GeV2 is achieved in the region of interest (low M2). A
typical bin width is 0.02 GeV2 for integrated spectra and
0.05 GeV2 for differential spectra.

The measured pion momentum distributions for π+

and π− are plotted in Fig. 1. The perfect agreement be-
tween these two spectra shows that there are no system-
atic differences. The shape of the momentum distribution
is quite close to phase space which is also shown in Fig. 1.

Figures 2a–d show the measured distributions in the
invariant masses of the π+π−, π±π0 and π+π−π0 systems
(the plot (a) contains all combinatorial contributions, i.e.
4 entries per event). A strong signal from the ρω channel
is clearly seen in Figs. 2a,b; we shall discuss this feature
in Sect. 4.

2.2 Correlation functions for inclusive distributions

The single-particle inclusive density ρ1(p1) and the two-
particle inclusive density ρ2(p1, p2) are related to the dif-

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0.5 1 1.5 2

M 2
+-   [GeV2]

M
2 +
-0  

 [G
eV

2 ]

a)

0
10000
20000
30000
40000
50000
60000
70000
80000

0 0.5 1 1.5 2

η

ω

M2 
+-0   [GeV2]

b)

0
200
400
600
800

1000
1200
1400
1600

x 10 2

0 0.5 1 1.5

M 2
ππ   [GeV2]

ev
en

ts ρ

c)

+-
±0

0

10000

20000

30000

40000

50000

0 0.5 1 1.5

M 2
ππ   [GeV2]

d)

++
--

Fig. 2. The measured mass distributions for the reac-
tion p̄p → 2π+2π−π0: a the double-differential spectrum
dN/dM2

+−dM2
+−0 as a function of the invariant masses of the

π+π− and π+π−π0 systems, b the spectrum of the π+π−π0

invariant mass, c the spectra of the π+π− (•) and π±π0 (◦)
invariant masses, d the spectrum of the π+π+ and π−π− in-
variant masses

ferential cross-sections by

ρ1(p1) = σ−1 dσ

d3p1/2E1
(3)

ρ2(p1, p2) = σ−1 dσ

d3p1/(2E1) d3p2/(2E2)
. (4)

One of the definitions of pion pair correlations is based on
the formula

c(p1, p2) = ρ2(p1, p2) − ρ1(p1)ρ1(p2) . (5)

Alternatively the two-particle correlations can be described
in terms of the ratio

C(p1, p2) =
ρ2(p1, p2)
ρ0(p1, p2)

, (6)

where ρ0(p1, p2) is the two-particle distribution in the ab-
sence of correlations, with various prescriptions being used
in the literature. One choice, consistent with (5), is the
product of the single-particle densities ρ0(p1, p2) = ρ1(p1)
ρ1(p2). Another choice of reference sample, mentioned in
the introduction, is to take the two-particle inclusive dis-
tribution for unlike pions: ρ0(p1, p2) = ρ+−

2 (p1, p2) [8–11].
In this case some experimental uncertainties cancel out in
the ratio R2(p1, p2) = ρ

++|−−
2 (p1, p2)/ρ+−

2 (p1, p2). How-
ever, the correlation function thus calculated is known to
be distorted by the dynamics for particles of unlike charge
[10,1].

Averaging over angles and momenta gives correlation
functions depending on one parameter, i.e. the two-pion
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Fig. 3. The calculated effective-mass distributions a ρ2(M)
and (ρ1 · ρ1)(M) for p̄p → 5π at

√
s = 2mp, assuming a pure

phase-space distribution, b the corresponding correlation func-
tion C(M)

invariant mass M :

C(M) =
ρ2(M)

(ρ1 · ρ1)(M)
(7)

ρ2(M) =
∫

δ
(
M −

√
(p1 + p2)2

)
ρ2(p1, p2)

× d3p1d
3p2

(2E1)(2E2)
(8)

(ρ1 · ρ1)(M) =
∫

δ
(
M −

√
(p1 + p2)2

)
ρ1(p1)ρ1(p2)

× d3p1d
3p2

(2E1)(2E2)
(9)

The invariant mass M is uniquely related to the square of
the momentum difference:

(p1 − p2)2 = 4µ2 − M2 = −Q2, (10)

where µ is the pion mass and Q is the difference of the
three-momenta of the two pions in their centre-of-mass
system (CMS), therefore the variables M2 and Q2 are
equivalent.

Because of the total energy-momentum conservation,
the ratio C(M) is not a constant even if the distributions
dσ/(d3p1/2E1) and dσ/(d3p1/2E1)(d3p2/2E2) are deter-
mined by phase space alone. This purely kinematical ef-
fect is especially strong for the p̄p annihilation at rest2, as
shown in Fig. 3 for the annihilation into five pions. There-
fore these kinematical correlations must be removed from
the correlation function C(M) in order to reveal the dy-
namics of the pion production.

2.3 Single-variable two-pion correlations

In this subsection we present the single-variable two-pion
correlations R2(M) and C(M) which have been frequently
used in previous analyses. In order to isolate the correla-
tion effects we compare the experimental density with a

2 In high energy reactions this effect is not significant, if the
two pions carry a small fraction of the total energy
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Fig. 4a–c. Inclusive experimental two-pion correlations vs. the
effective mass squared M2 of the pion pair in the 2π+2π−π0

channel. Two-particle distributions ρ2(M), (8), divided by
phase space ρPS

2 (M): a pairs of identical pions, π+π+ (•) and
π−π− (◦), b pairs of unlike pions, c the ratio R2 of the ex-
perimental two-particle distributions for like and unlike pions:
ρ++
2 (M)/ρ+−

2 (M) (•) and ρ−−
2 (M)/ρ+−

2 (M) (◦)

five-pion phase space distribution corrected for experimen-
tal cuts and efficiencies in the same way as the data.

The data sample of 8.3 · 105 events was used to cal-
culate the two-particle distributions ρ2(M) defined by (8)
for pairs of identical pions, ρ++

2 (M) and ρ−−
2 (M), and

pairs of unlike pions3, ρ+−
2 (M). The corresponding two-

particle density from the phase-space simulation is called
ρPS
2 (M). In Figs. 4a and 4b we consider the ratios of distri-

butions for like- and unlike-pion pairs normalized to phase
space, ρ

++|−−|+−
2 (M)/ρPS

2 (M), for which the kinemati-
cal correlations discussed in Sect. 2.2 cancel. The ratios
ρ++
2 (M)/ρPS

2 (M) and ρ−−
2 (M)/ρPS

2 (M) shown in Fig. 4a
peak at small Q2. Note that this peak is stronger than
that in the p̄p → 2π+2π− case [1].

Figure 4c shows the ratio of experimental two-particle
distributions

R2(M) =
ρ
++|−−
2 (M)
ρ+−
2 (M)

. (11)

The results for R2(M) are consistent with those previously
reported [8]. Comparing Figs. 4a and 4b with Fig. 4c one
sees that the peak in R2(M) is partly due to the strong
depletion of the unequal charge distribution at small Q2

which is due to the presence of ρ mesons and other res-
onances, absent in the π+π+ and π−π− channels. It is
therefore dangerous to deduce model parameters from the

3 Here and below all distributions for unlike-pion pairs con-
tain multiple entries per event corresponding to all possible
π+π− combinations
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2 (M)/(ρ1 · ρ1)PS(M). The experimental correla-
tion functions normalized to the phase-space distribution,
C(M)/CPS(M), (12), are shown in c for π+π+ (•) and π−π−

(◦), and in d for π+π−

ratio R2(M), as has been discussed many times [1,5,12,
15].

To study the correlation function C(M) in (7), the two-
particle distribution for uncorrelated pion pairs was calcu-
lated using the same event-mixing method as in [1]. The
experimental distribution (ρ1 ·ρ1)(M) normalized to phase
space (see below) is plotted in Fig. 5. Separate (ρ1 ·ρ1)(M)
distributions were analysed for ++, −−, and +− pion
pairs and all found to be consistent. All these distribu-
tions are found to be quite flat in the region of interest
as it should be. Figures 6a,b show the correlation func-
tions C(M) for like and unlike pion pairs. In order to ac-
count for the trivial M -dependence which arises from the
energy-momentum conservation for the pure phase-space
distribution (see Fig. 3) and from the experimental cuts,

pp
– ab

a

b

π1 π2

π3

π4

π5

Fig. 7. The two-pion subsystems a = (π1 + π2) and b = (π3 +
π4) in the five pion final state (π5 = π0)

the following double ratio has been calculated:

C++|−−|+−(M)
CPS(M)

=
ρ
++|−−|+−
2 (M)
(ρ1 · ρ1)(M)

:
ρPS
2 (M)

(ρ1 · ρ1)PS(M)
. (12)

The result is shown in Figs. 6c,d. The ratios C++(M)/CPS

(M) and C−−(M)/CPS(M) display a clear enhancement
at low effective mass of like-charge pion pairs. The distri-
butions in Figs. 6c,d resemble very much the distributions
in Figs. 4a,b obtained in a very different manner.

3 Differential two-pion correlations

So far we have presented the inclusive correlation func-
tions C++|−−(M)/CPS(M) where all kinematical vari-
ables except M have been integrated out. To investigate
the correlation signal in more detail we turn to differen-
tial densities. Our approach generalizes the method used
previously for the four-pion system [1].

We introduce the two-pion subsystems a and b with
four-momenta pa = (p1 + p2) and pb = (p3 + p4) and in-
variant masses Ma and Mb, see Fig. 7. The invariant mass
of the four-pion system with the total four-momentum
pab = (p1 + p2 + p3 + p4) is Mab =

√
p2

ab recoiling against
the π0 with the four-momentum p5. Using the reduction
formula for the 5-body phase space

dΦ5(p, p1, p2, p3, p4, p5)
= dΦ4(pab, p1, p2, p3, p4)dΦ2(p, pab, p5)(2π)3dp2

ab , (13)

the differential cross section of (1) can be written in the
form

dσ ∼ |T (k, {pi})|2k→0
dΦ4(pab, p1, p2, p3, p4)

×dΦ2(p, pab, p5)dM2
ab . (14)

Given the invariant masses Ma, Mb, and Mab, the
triple differential cross section is defined by integrating
over the angles specifying the relative orientation of the
momenta of the pions within the subsystems a and b, the
relative orientation of the subsystems a and b, and the
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direction of the 5-th pion (the corresponding solid an-
gles are dΩ12, dΩ34, dΩab, and dΩ5). Two types of sub-
sytems a and b will be used which are distinguished by
the explicit labels of the pion charges: the case of like-
pion pairs corresponds to Ma = M++ and Mb = M−−,
and the case of unlike-pion pairs to Ma = M+−(a) and
Mb = M+−(b). The 5-th pion is always π0, and the no-
tation Mab = M++−− will be used to indicate explicitly
that there are only charged pions in the subsytems a and
b.

For the reaction p̄p → 2π+2π−π0 we have

dσ

dM2
abdM2

adM2
b

∼ W (Mab, Ma, Mb)P
(√

s, Mab, µ
)

(15)

×
∫

|T (k, {pi})|2k→0 dΩabdΩ12dΩ34dΩ5

where P (M, Mx, My) is the relative momentum of two
particles with masses Mx and My and the total invari-
ant mass M

P (M, Mx, My)

=

√
(M2 − (Mx + My)2)(M2 − (Mx − My)2)

2M
. (16)

The factor W (Mab, Ma, Mb) is given by

W (Mab, Ma, Mb) =
Pab

Mab

√(
1 − 4µ2

M2
a

) (
1 − 4µ2

M2
b

)
, (17)

Pab = P (Mab, Ma, Mb) . (18)

Removing the phase-space factor W (Mab, Ma, Mb), we de-
fine the triple differential density:

%(Mab, Ma, Mb) =
1

W (Mab, Ma, Mb)

× dσ

σ · dM2
abdM2

adM2
b

(19)

∼ P (
√

s, Mab, µ)

×
∫

|T ({pi})|2dΩabdΩ12dΩ34dΩ5 (20)

where σ is the total cross section.
An advantage of using the triple differential density

%(Mab, Ma, Mb) is that it does not contain kinematical de-
pendences on the invariant masses of the two-pion pairs
a and b. This means that for a constant T matrix the
density %(Mab, Ma, Mb) does not depend on Ma and Mb,
contrary to ρ2(Ma) = dσ/dMa of (8). By integrating over
the invariant mass of the four-pion system, Mab, within
the interval [Mmin

ab , Mmax
ab ] we get the integrated two-

dimensional density

%(Ma, Mb)[Mmin
ab ,Mmax

ab ]

=
∫ Mmax

ab

Mmin
ab

%(Mab, Ma, Mb)dMab . (21)

The integrated two-dimensional density, (21), is a gener-
alization of the differential density introduced in [1] for

M
M

- Mab

2
b2

a

Fig. 8. The physical region in the (M2
a , M2

b , M2
ab) space
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Fig. 9. a The physical region in the (M2
a , M2

b ) plane for dif-
ferent values of the invariant mass Mab (GeV) of four pions
as indicated on the curves, b the contour plot of the relative
momentum Pab in the (M2

a , M2
b ) plane. The numbers at the

curves indicate the values of P 2
ab, (18), in units of M2

ab/4

the four-pion final state. For a given invariant mass Mab

of the four-pion system the pair of variables (Ma, Mb) can
be replaced by (Q, Pab), where the Q of (10) is twice the
relative three-momentum between the pions 1 and 2 in
their centre-of-mass system and the relative momentum
Pab is equal to the total momentum of the pions 1 and 2,
Pab = |p1 + p2|, in the four-pion CMS.

The physical region in the (M2
a , M2

b ) plane depends
on the invariant mass Mab of the four pions, see Fig. 8.
Figure 9a shows the contour plot for various values of the
invariant mass Mab. The region of small Q2 where sym-
metrization effects are expected is in the lower left corner.
The contour plot in Fig. 9b displays the relative momen-
tum P 2

ab of the two pion pairs for a given total invariant
mass Mab. In the relativistic phase-space approximation,
the two-dimensional density %(Ma, Mb)[Mmin

ab ,Mmax
ab ] is a

superposition of flat distributions with the boundaries de-
pendent on Mab (see Fig. 9a) and %(Ma, Mb)[Mmin

ab ,Mmax
ab ]

must be flat within the physical region determined by
the lower limit in the integral over Mab in the r.h.s. of
(21). The double-differential cross-section for the like-pion
and unlike-pion pairs, dσ/dM2

++dM2
−− and dσ/dM2

+−(a)

dM2
+−(b), are shown in Fig. 10 in comparison with the pure

phase space distribution.
In this and all similar two-dimensional plots the con-

trast is readjusted for clarity of graphical presentation.
Wherever appropriate we shall indicate the number of
events which form the basis for the subplot in question.
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Fig. 11. The differential density
%(M++, M−−)[Mmin

++−−,Mmax
++−−] as a function of the effective

masses squared of the like-pion pairs in the 2π+2π−π0 channel
for various ranges of the 2π+2π− invariant mass as indicated.
The numbers inserted in each subfigure indicate the number of
events used for the calculation of %

The number of entries in the plot is the number of events in
the case of like-pion pairs and twice the number of events
in the case of unlike-pairs. Recall that the total number
of 2π+2π−π0 events is 8.3 · 105. In this way the reader
can judge the relative importance of the data base for the
graph in question.

In order to remove the trivial kinematical effects, as
discussed above, we plotted the integrated differential den-
sity in Fig. 11 for different intervals of the 2π+2π− invari-
ant mass [Mmin

++−−, Mmax
++−−]. The widths of the four cho-

sen mass intervals [Mmin
++−−, Mmax

++−−] correspond to equal
volumes of the corresponding phase spaces. The depen-
dence of these two-dimensional slices on the invariant mass
of the 2π+2π− system shows an interesting effect. For
the 2π+2π− mass intervals up to about 1.6 GeV, there
is a clear enhancement in the double-differential density
in the region of small invariant masses of the like-charge
pion pairs (M2

++, M2
−− → 4µ2). However, no enhance-

ment is seen for the mass interval [1.6, 1.7] GeV. This
is contrary to the expectation based on a naive interpre-
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Fig. 12. The differential density
%(M+−(a), M+−(b))[Mmin

++−−,Mmax
++−−] as a function of the effec-

tive masses squared of the unlike-pion pairs in the 2π+2π−π0

channel for various ranges of the 2π+2π− invariant mass as
indicated. The numbers inserted in each subfigure indicate the
number of events used for the calculation of %

tation of the BE correlations where the strength of the
peak should increase with increasing of the 2π+2π− in-
variant mass since the pion pairs with larger total mo-
mentum are better suited for probing a short range an-
nihilation source associated with the BE effect. We shall
discuss this new effect further in Sect. 4.1. The differential
density %(M+−, M+−)[Mmin

++−−,Mmax
++−−] for the unlike-pion

pairs is shown in Fig. 12. It displays ρ meson bands and a
rather smooth behaviour below the ρ mass, as expected.

For the further discussion we construct the following
partial projections (double slices) of the two-particle den-
sity. The two-dimensional space (M2

++, M2
−−) is divided

into slices M2
i ≤ M2

−−|++ < M2
i+1 and the projections of

%(M++, M−−)[Mmin
++−−,Mmax

++−−] are defined by

%i(M++|−−) (22)

=
∫ M2

i+1

M2
i

%(M++, M−−)[Mmin
++−−,Mmax

++−−]

%PS
dM2

−−|++ .
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1.40<Mab<1.52 GeV

  223 kEvents

1.52<Mab<1.70 GeV

  341 kEvents

Fig. 13. The experimental mass
distributions for different subsystems:
a π+π−π0 (dσ/dM2

+−0), b π±π0

(dσ/dM2
±0), c π+π− (dσ/dM2

+−) to-
gether with the corresponding phase-
space distributions (solid curves). The
four columns correspond to intervals
of the 2π+2π− invariant mass M++−−
shown at the top. The numbers given
above each column indicate the num-
ber of events used in that mass inter-
val, d two-particle distributions (simi-
lar to ρ2(M), (8)) for the pairs of identi-
cal pions divided by the corresponding
phase-space distribution

The differential density %PS(Ma, Mb) is calculated using
the five-pion phase-space samples with the experimental
cuts. The pure five-pion phase-space distribution without
these cuts would be a constant within the area defined by
Mmin

++−−.

4 Discussion

4.1 Resonance effects

It is well known that resonances are strongly produced
in the reaction p̄p → 2π+2π−π0, see Figs. 2a–c where
the signals of ρ and ω are clearly seen in the invariant
mass projections. Since resonance mechanisms affect the
double-differential densities (21) which we use to search for
the BE correlations, it is important to investigate the role
of resonance production. The strong interplay between the
production of resonances and the manifestation of BE cor-
relations is demonstrated in Fig. 13 where the inclusive
mass distributions of like-pion pairs normalized to phase
space are plotted for different intervals of the invariant
mass M++−− of the 2π+2π− system. The densities have
a strong peak at M2

++ → 4m2
π for low values of M++−−

while for the highest M++−− interval the distribution be-
comes nearly flat. This effect is strongly correlated with
the relative strength of ω production as shown in Fig. 13.

To discuss the role of the ρω channel we introduce a
kinematical cut removing the events which satisfy

(M+− − Mρ)2

(0.187GeV)2
+

(M+−0 − Mω)2

(0.078GeV)2
≤ 1 (23)

for any combination of the four charged pions in the π+π−
and π+π−π0 subsystems. The double-differential densities
%(M++, M−−)[Mmin

++−−,Mmax
++−−], similar to those plotted in

Fig. 11, have been calculated for the data sample with the
ρω channel removed in Fig. 14 and for the complement
in Fig. 15. The double-differential densities for the events
which do not contain the ρω channel show a clear en-
hancement at small invariant masses of the like-sign pion
pairs for all intervals of the 2π+2π− invariant mass, while
the analogous distributions for all events in Fig. 11 exhibit
this feature only for a limited range of M++−−. Generally
the distributions for the ρω sample of Fig. 15 are much
flatter4. These results demonstrate that the presence or
absence of BE correlations depends on the resonance chan-
nel considered. The size of BE correlations expected from
certain resonance production channels is discussed in the
next section.

4 Note that the data sample in Fig. 15 contains combinatorial
background events which are not of ρω origin
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Fig. 16. The calculated mass distributions
dN/dM2

+−dM2
+−0 (left) and the differential densities

%(M++, M−−)[Mmin
++−−,Mmax

++−−] (Mmin
++−− = 1.4 GeV) (right)

for the following resonance channels: a,b ρ0ω, c,d σω, e,f
ρ0σπ0, g,h ρ0ρ0π0. No absolute normalization is implied as
the contrast is readjusted to the maximum value occurring in
each plot

4.2 Model studies of the resonance effects

In this section we discuss in some detail whether the en-
hancement observed in %(M++, M−−) at M2

++, M2
−− →

4µ2 can be produced by resonance mechanisms. Given the
large number of the essential partial waves (1S0, 3S1, 1P1,
3PJ) and the complexity of the five-pion final state, a par-
tial wave analysis would be a formidable problem which we
do not attempt to solve here. Our goal is to demonstrate
some typical effects arising from simple resonance mecha-
nisms with the lowest resonances in the 2π and 3π systems.
For this purpose we have performed Monte Carlo simula-
tions of the following resonance channels: p̄p(0++, 2++) →
ρ0ω, p̄p(1+) → ρ0π+π−π0, p̄p(1−) → σω, p̄p(1+) →
ρ0π0σ, ρ±π∓σ, p̄p(0−) → ρ0ρ0π0, ρ±ρ∓π0. The model
amplitudes used in these calculations are described in Ap-
pendix A. The calculated mass distributions vs. the in-
variant masses of the π+π− and π+π−π0 systems and
the double-differential densities for the like-pion pairs are
shown in Fig. 16.
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The mechanisms analyzed produce quite different dis-
tributions in the invariant masses of the π+π− and π+π−
π0 systems as displayed in the left column of Fig. 16. Com-
parison with the experiment shows that the ρπσ mecha-
nism leads to mass distributions in qualitative agreement
with the data excluding the ω events. The latter can be
attributed to the ωρ and ωσ mechanisms.

The simulations for the differential density %(M++,
M−−) demonstrate a strong dependence on the reaction
mechanism in the region of small invariant masses M++
and M−− (the right column of Fig. 16). The ρω and σω
mechanisms show a clear depletion of %(M++, M−−) for
M2

++, M2
−− → 4µ2, therefore, these mechanisms produce

no visible BE correlation effects. This result agrees with
the experimental observation discussed in Sect. 4.1 that
the events with ω mesons show little enhancement at small
invariant masses of the π+π+ and π−π− pairs. On the
other hand, %(M++, M−−) at M2

++, M2
−− → 4µ2 shows a

clear enhancement for the ρ3π, ρπσ, and ρρπ mechanisms.
Since overall the ρπσ mechanism (plus some ω production)
is in qualitative agreement with the measured mass dis-
tributions, we conclude that at least part of the observed
pion correlation signals is likely to come from resonance
dynamics.

Further insight can be obtained from studying the pro-
jections %i(M++), (22), of the differential density ρ(M++,
M−−, M++−−) as a function of the invariant masses M++,
M−−, and M++−−. The experimental data are shown in
Fig. 17 and the simulations for the ρπσ and ρρπ mecha-
nisms in Figs. 18,19. The M++−− mass intervals are cho-
sen such that the corresponding projections have the same
height for the pure five-pion phase space approximation.

The amplitudes used in our model calculations have
been Bose symmetrized. For the purpose of illustrating
the role of quantum mechanical symmetrization we have
calculated the unphysical case when the like-sign pions
are treated as distinguishable particles. We find that for
the ρσπ mechanism symmetrization plays an important
role in producing the strong enhancement at small in-
variant mass of the like-pion pairs. This is demonstrated
in Fig. 20 where the projections of the double differential
densities are displayed for the unsymmetrized amplitude;
they show no enhancement for the intermediate and high
M++−− intervals and only moderate enhancement for the
low M++−− interval, contrary to the symmetrized case in
Fig. 18.

The importance of the resonance mechanisms for the
interpretation of BE correlation signals in p̄p annihilation
at rest has already been discussed in literature, see [12–14]
and references therein. In particular, it was demonstrated
[12] that the ρρ − σσ interference together with the BE
amplitude symmetrization can satisfactorily reproduce the
BE correlation peak in the p̄n → 2π+3π− at rest. We
have performed a Monte Carlo simulation of the ρρ − σσ
interference in the state JPC = 0−+ and found that one
can easily obtain double differential densities similar to
the experimental ones by adjusting the relative strength
and phase of the two mechanisms; a typical example is
shown in Fig. 21.

Our study of the resonance mechanisms shows that the
BE correlation peaks at small invariant masses of like-sign
pion pairs can easily be produced either by a single chan-
nel with resonances (ρσπ) or by an interference between
different resonance channels (ρρπ − σσπ), the BE sym-
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simulation of annihilation into (ρρ)π
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simulation (ρπ)σ without symmetrization
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Fig. 21. The calculated projections %i(M++) of
%(M++, M−−)[Mmin

++−−,Mmax
++−−] for the interference of

the ρρπ and σσπ annihilation mechanisms. The rel-
ative strength of the two mechanisms is normalized
to equal branching ratios for the ρρπ and σσπ chan-
nels in the absence of interference. The relative phase
corresponds to maximal constructive interference at
M++, M−− → 2mπ



CPLEAR Collaboration: Pion correlations and resonance effects in p̄p annihilation at rest to 2π+2π−π0 449

metrization playing an important role in both cases. Fur-
ther studies in this direction, in particular, the determi-
nation of dominant mechanisms for the individual partial
waves would be very desirable.

5 Summary and conclusions

The complete kinematical information available from the
CPLEAR experiment for the five pion final state in p̄p →
2π+2π−π0 at rest has allowed us to study pion corre-
lation signals for inclusive and differential distributions.
The properly normalized inclusive distribution C(M) for
an equal charged pion pair shows a moderate enhance-
ment at small pion pair mass. In contrast to this, the ratio
R2(M) which is normalized to unequal charge pairs has a
strong enhancement which however is due to the known
dynamical depletion of π+π− pairs by the nearby ρ me-
son resonance. Correspondingly, the direct interpretation
of single variable correlation functions in terms of a pion
source radius and in particular in terms of the stochastic
HBT mechanism remains questionable for p̄p annihilation
at rest as was suggested already in [1] and in earlier papers.
At high energies this situation may be different [17–25].

In the 5π channel, the energy carried away by the π0

allows us to investigate the differential distributions in the
two equal charge pion pairs as a function of the 2π+2π−
invariant mass. Two regimes are characteristic for the re-
sults: (1) At small π0 energies the Dalitz plot shows a
strong population by the ρω channel and only a weak
correlation signal for small M++,M−− which is not unex-
pected for a two body final state. (2) The larger part of the
data corresponding to sizable π0 energies is characterized
by the dominance of the ρ3π channel in the Dalitz plot. It
shows a large correlation enhancement at low M++,M−−
similar to the situation occurring in the p̄p → 2π+2π−
channel analyzed in the earlier paper [1]. Theoretical sim-
ulations of the ρ3π and ρσπ channel show an enhance-
ment in the M++,M−− correlation corner which is quali-
tatively similar to the observed effect. By studying partial
projections of the differential correlation signals, this en-
hancement has been traced to the P-wave nature of the ρ
meson resonance in combination with the trivial quantum
mechanical Bose symmetrization of the resonance produc-
tion amplitude. A fair amount of the observed correlation
enhancement may therefore be due to conventional reso-
nance production amplitudes which are however difficult
to normalize absolutely. We therefore have refrained from
making any fits related to pion source radii both for the
inclusive distributions where the signal is relatively weak
and also for the double-differential correlation functions
where a good part of the enhancement is likely to be due to
resonance production mechanisms. The simulations made
in the earlier analysis [1] for the 2π+2π− channel produced
no major contribution to the correlation signals coming
from the ρππ and ρρ mechanisms. In view of the present
situation a simultaneous full partial wave analysis of the
2π+2π−, of the 2π+2π−π0 and of the multiple π0 channels
would be desirable. This is however beyond the scope of
this paper.

pp
–

π1

π2

π3

π4

π5

ρ

σ pp
–

π1

π2

π3

π4

π5

ρ

a b

pp
–

π1

π2

π3

π4
π5

ρ
ρ

pp
–

π1

π2

π3

π4

π5

ρ

ω

c d

Fig. 22a–d. Resonance mechanisms of the p̄p annihilation
into 5π
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A Appendix

The amplitudes corresponding to the resonance mecha-
nisms ρπσ, ρ3π, ρρπ,and ρω are given by the diagrams in
Fig. 22.

The p̄p vertices are taken with a minimum number of
derivatives. The ρππ vertex has the form

Vρππ = g1εµ(pµ
1 − pµ

2 )Fρππ(m2
ππ) (24)

where g1 is the coupling constant, εµ is the polarization
of the ρ, pµ

n are the pion momenta, and Fρππ(m2
ππ) is the

form factor depending on the invariant mass of the ππ
system. In similar notation, the ωπππ vertex has the form

Vωπππ = g2εµαβγεµpα
1 pβ

2pγ
3 . (25)
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The propagators corresponding to the vector particles are
given by the formula

G(p) =
gµν − pµpν/m2

V

p2 − m2
0 − M(p2)

(26)

where mV and m0 are the physical and bare masses and
M(p2) is the mass operator. The mass operator for the ρ
meson is defined by the dispersion integral:

M(s) =
1
2π

∫ ∞

4m2
π

Γ (s′)
s − s′ ds′ (27)

Γ (s) =
g2
1Fρππ(s)2k3

24πs
(28)

where k =
√

s/4 − m2
π is the relative momentum in the ππ

system. A monopole form factor Fρππ(s) = (1 + k2/ν2)−1

is used with ν = 0.2 GeV, and the parameters m0 and g1
are defined by the mass and the width of the ρ meson. The
energy dependence of the mass operator for the ω meson
is neglected: m2

0 + M(p2) = (mω − iΓω/2)2 with constant
Γω.

The σ block in Fig. 22a denotes the full Green func-
tion of the ππ system in the scalar-isoscalar channel. The
coupled channel model [16] has been used to describe the
S-wave ππ final state interaction which leads to an addi-
tional factor proportional to the pion scalar form factor
F 0

π (sππ) (see [16] for details).
The components above are combined straightforwardly

to construct the amplitudes for the resonance channels
concerned. For example, the amplitude corresponding to
the NN̄(JPC = 1+−, I = 0) → ρσπ has the following
structure:

TNN̄→ρσπ→5π = gag1
F 0

π (m2
34)

m2
12 − m2

0 − M(m2
12)

×εa
µ(pµ

1 − pµ
2 )C1ν5

1ν11ν2
C00

1ν31ν4
. (29)

Here mnk = (pn+pk)2 and νn are the isospin indices of the
pions. To obtain the proper amplitude the expression on
the r.h.s of (29) must be symmetrized with respect to all
permutations of the pions. The amplitudes for the other
resonance mechanisms: NN̄(JPC = 1+−, I = 0) → ρ3π,
NN̄(JPC = 0−+, I = 1) → ρρπ, NN̄(JPC = 0−+, I =
1) → σσπ, NN̄(JPC = 0++, I = 1) → ρω are constructed
in a similar way

TNN̄→ρπππ→5π

= gag1
1

m2
12 − m2

0 − M(m2
12)

×εa
µ(pµ

1 − pµ
2 )C1ν5

1ν11ν2
C00

1ν31ν4
(30)

TNN̄→ρρπ→5π

= gag2
1

(p1 − p2)µ(p3 − p4)µ

(m2
12 − m2

0 − M(m2
12)) (m2

34 − m2
0 − M(m2

34))

×
∑

ν

C1ν
1ν11ν2

C1 −ν
1ν31ν4

δνaν5 (31)

TNN̄→σσπ→5π

= gaF 0
π (m2

12)F
0
π (m2

34)C
00
1ν11ν2

C00
1ν31ν4

δνaν5 (32)

TNN̄→ρω→5π

= gag1g2
εµαβγ(p1 − p2)µpα

3 pβ
4pγ

5

(m2
12 − m2

0 − M(m2
12)) (m2

34 − m2
ω − imωΓω)

×C1νa
1ν11ν2

C1 −ν5
1ν31ν4

. (33)

Here ga is the coupling constant for the corresponding
NN̄ annihilation vertex, Ctν

t1ν1t2ν2
are the Clebsch-Gordan

coefficients, νa is the isospin component of the initial state
with the isospin I = 1, and the proper BE symmetrization
is implied.

References

1. A. Angelopoulos et al., CPLEAR Collaboration, Europ.
Phys. J. C1 (1998) 139

2. R. Hanbury-Brown, R.Q. Twiss, Phil. Mag. 45, 633 (1954)
3. G. Goldhaber et al., Phys. Rev. Lett. 3, 181 (1959); G.

Goldhaber et al., Phys. Rev. 120, 300 (1960)
4. G. Cocconi, Phys. Lett. B 49, 459 (1974)
5. G.I. Kopylov, M.Y. Podgoretskii, Sov. J. Nucl. Phys. 19,

215 (1974)
6. R. Adler et al., CPLEAR Collaboration, Phys. Lett. B

267, 154 (1991); R. Adler et al., CPLEAR Collaboration,
Z. Phys. C 65, 199 (1995)

7. R. Adler et al., CPLEAR Collaboration, Nucl. Instrum.
Methods A 379, 76 (1996)

8. R. Adler et al., CPLEAR Collaboration, Z. Phys. C 63,
541 (1994)

9. M. Deutschmann et al., Nucl. Phys. B 204, 333 (1982)
10. S. Ahmad et al., Proc. IV LEAR Workshop, Villars (1987)

697, edited by C. Amsler, G. Backenstoss, R. Klapisch, C.
Leluc, D. Simon, L. Tauscher

11. K. Sarigiannis et al., Nucl. Phys. A 558, 43c (1993)
12. M. Gaspero, Nucl. Phys. A 588, 861 (1995); A 614, 565

(1997)
13. M. Gaspero, A. De Pascuale, Phys. Lett. B 358, 146 (1995)
14. P. Annios et al., Phys. Rev. 20, 402 (1968)
15. H.Q. Song, B.S. Zou, M.P. Locher, J. Riedlberger, P. Truöl,

Z. Phys. A 342, 439 (1992)
16. M.P. Locher, V.E. Markushin, H.Q. Zheng, Phys. Rev. D

55 (1997) 2894
17. A. Breakstone et al., Phys. Lett. B 162, 400 (1985)
18. T. Alexopoulos et al., Phys. Rev. D 48, 1931 (1993)
19. P. Abreu et al., DELPHI Collaboration, Z. Phys. C 63, 17

(1994)
20. T. Akesson et al., Phys. Lett. B 129, 269 (1983)
21. T. Akesson et al., Phys. Lett. B 187, 420 (1987); T.

Akesson et al., Z. Phys. C 36, 517 (1987)
22. C. Albajar et al., Phys. Lett. B 226, 410 (1989)
23. N. Neumeister et al., Phys. Lett. B 275, 186 (1992)
24. N. Neumeister et al., Z. Phys. C 60, 633 (1993)
25. T.C. Awes et al., Z. Phys. C 69, 67 (1995)


